MESSAGE-PASSING FOR GRAPH-STRUCTURED LINEAR PROGRAMS Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes
نویسندگان
چکیده
The problem of computing a maximum a posteriori (MAP) configuration is a central computational challenge associated with Markov random fields. There has been some focus on “tree-based” linear programming (LP) relaxations for the MAP problem. This paper develops a family of super-linearly convergent algorithms for solving these LPs, based on proximal minimization schemes using Bregman divergences. As with standard message-passing on graphs, the algorithms are distributed and exploit the underlying graphical structure, and so scale well to large problems. Our algorithms have a double-loop character, with the outer loop corresponding to the proximal sequence, and an inner loop of cyclic Bregman projections used to compute each proximal update. We establish convergence guarantees for our algorithms, and illustrate their performance via some simulations. We also develop two classes of rounding schemes, deterministic and randomized, for obtaining integral configurations from the LP solutions. Our deterministic rounding schemes use a “re-parameterization” property of our algorithms so that when the LP solution is integral, the MAP solution can be obtained even before the LP-solver converges to the optimum. We also propose graph-structured randomized rounding schemes applicable to iterative LP-solving algorithms in general. We analyze the performance of and report simulations comparing these rounding schemes.
منابع مشابه
Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes
The problem of computing a maximum a posteriori (MAP) configuration is a central computational challenge associated with Markov random fields. A line of work has focused on “tree-based” linear programming (LP) relaxations for the MAP problem. This paper develops a family of super-linearly convergent algorithms for solving these LPs, based on proximal minimization schemes using Bregman divergenc...
متن کاملMAP Estimation, Message Passing, and Perfect Graphs
Efficiently finding the maximum a posteriori (MAP) configuration of a graphical model is an important problem which is often implemented using message passing algorithms. The optimality of such algorithms is only well established for singly-connected graphs and other limited settings. This article extends the set of graphs where MAP estimation is in P and where message passing recovers the exac...
متن کاملOn Learning Conditional Random Fields for Stereo Exploring Model Structures and Approximate Inference
Until recently, the lack of ground truth data has hindered the application of discriminative structured prediction techniques to the stereo problem. In this paper we use ground truth data sets that we have recently constructed to explore different model structures and parameter learning techniques. To estimate parameters in Markov random fields (MRFs) via maximum likelihood one usually needs to...
متن کاملDeveloping Parallel Programs in a Graph-Based Environment
Explicit parallel programming requires changing from a single linear flow of control to complicated, non-linear systems of parallel processes related via complex interdependencies. We argue that traditional, text-based parallel programming languages are not the best choice for describing parallel systems. Almost all interesting aspects of parallel systems are hidden in the linear textual descri...
متن کاملGraph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes
The goal of the present paper is the derivation of a framework for the finite-length analysis of message-passing iterative decoding of low-density parity-check codes. To this end we introduce the concept of graph-cover decoding. Whereas in maximum-likelihood decoding all codewords in a code are competing to be the best explanation of the received vector, under graph-cover decoding all codewords...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008